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Abstract— A method to construct (strict) Lyapunov
Functions for a class of Higher Order Sliding Modes (HOSM)
algorithms, that are homogeneous and piecewise state affine
is presented. It is shown first that several HOSM algorithms
presented in the literature posses these properties. The
basic idea of the construction method is borrowed from the
constructive proofs of the Lyapunov’s Converse Theorems. It
is shown, by means of some concrete examples of second and
third order, that the construction of the Lyapunov Function
can be done for this class of systems. The obtained Lyapunov
functions allow the estimation of the convergence time, the
values of the gains that render the origin finite time stable,
and the robustness of the algorithms to bounded perturbations.

Key words: Sliding Mode Control, Lyapunov Functions.

I. INTRODUCTION

Lyapunov’s direct method is a very general and the most
accepted method to determine the stability properties of
dynamical systems. It has also become a central tool for
analysis and (robust) controller design in the modern control
theory.

High Order Sliding Modes (HOSM) provide finite time
stability and have an enormous capacity to reject non van-
ishing disturbances. Moreover, they eliminate the relative
degree one restriction of the classical (first order) sliding
modes (SM), and they reduce the high frequency switching
(Chattering) characteristic of the SM controllers.

Despite of the importance of Lyapunov’s method for
analysis and design in control the main tools to ascertain
the stability and robustness properties of HOSM algorithms
are the geometric methods and the homogeneity theory [3],
[9], [10]. It is natural to try to develop a Lyapunov-based
analysis and design theory for HOSM, and for this to be
possible it is crucial to be able to construct Lyapunov
functions for HOSM algorithms. Several steps have been
done in this direction recently. Weak Lyapunov functions
(with negative semidefinite derivative) have been obtained for
some second order sliding modes algorithms in [8]. However,
weak Lyapunov functions are not completely satisfactory for
analysis and design. For the Twisting Algorithm a strong
Lyapunov function has been obtained in [15], where basically
the classical Zubov’s method [1] has been used to construct
it. This consists in solving a first order Partial Differential
Equation, and then patching the solutions. Solving a PDE

is not always an easy task. Some other Lyapunov functions
for HOSM algorithms have been proposed in the literature:
for the Super-Twisting algorithm in [16], [11], [12]; for the
Twisting Algorithm in [15], [17], [13]. However, there is still
a big necessity of constructive methods to cover reasonably
the area.

The main objective of this paper is to make a further con-
tribution in this field. We propose a construction method of
(strict) Lyapunov functions for a class of HOSM algorithms,
sharing two properties: being homogeneous (what is today
a standard property for HOSM) and being piecewise state
affine. This last property is less known in the area, but many
important HOSM algorithms have it. For this class of systems
we describe a constructive method of Lyapunov functions
and we show by means of two examples of order two and
three that it effectively provides a usable function. We believe
that this method will be able to provide Lyapunov functions
for an important family of HOSM algorithms in the near
future.

In Section II we illustrate by means of examples that many
HOSM algorithms are indeed homogeneous and piecewise
state affine. We also describe the construction method and
some of its properties. In Section III the method is illustrated
by constructing two Lyapunov functions for the Twisting
algorithm. A Third order algorithm is treated in Section IV.
Finally in Section V we give some conclusions.

II. MOTIVATION AND DESCRIPTION OF THE
CONSTRUCTION METHOD

Due to the strong geometric and dynamical properties
of homogeneous systems, most Higher order sliding modes
algorithms, that are discontinuous by nature, are designed
to be homogeneous [9], [10]. This property, together with a
geometrical analysis, has become also the main tool for the
stability and robustness analysis of these algorithms.

Recall that a vector field f : Rn → Rn (or a differential
inclusion) is called homogeneous of degree δ ∈ R with the di-
lation dκ : (x1, x2, . . . , xn) 7→ (κρ1x1, κ

ρ2x2, . . . , κ
ρnxn),

where ρ = (ρ1, ρ2, . . . , ρn) are some positive numbers
(called the weights), if for any κ > 0 the identity holds
f (x) = κ−δd−1

κ f (dκx). A scalar function V : Rn → R is
called homogeneous of degree δ ∈ R with the dilation dκ if
for any κ > 0 the identity holds V (x) = κ−δV (dκx).
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Fig. 1. Integral curve example of the Twisting algorithm

Another interesting property, shared by many HOSM
algorithms, is that they are Piecewise State Affine systems.
This property can be very helpful in the analysis and, as
we want to propose in this paper, in the construction of
Lyapunov functions. To illustrate this fact we will consider
some examples.

A. Some Examples

1) Second Order Systems: For the second order system

ẋ1 = x2, ẋ2 = u,

consider the generalized 2-sliding homogeneous controller
proposed by Levant [10], given by

u = −k1 sign
(
r1x2 + r2

√
|x1| sign(x1)

)
−k2 sign

(
r3x2 + r4

√
|x1| sign(x1)

)
. (1)

This algorithm contains as special cases many of the basic
Second Order Sliding Modes (SOSM) Controllers. For ex-
ample, selecting r1 = r4 = 0, (1) becomes the Twisting
controller [3]

u = −k1sign(x1)− k2 sign(x2) . (2)

The closed loop system

ẋ1 = x2 , ẋ2 = ui , (3)

where the constant control values ui are given by

u1 = −k1 − k2, x1 > 0, x2 > 0
u2 = −k1 + k2, x1 > 0, x2 < 0
u3 = k1 + k2, x1 < 0, x2 < 0
u4 = k1 − k2, x1 < 0, x2 > 0

is (state) affine (linear with constant imputs) in each of the
four regions, in which the state space (x1, x2) is divided
by the two switching surfaces S1 = {x1 = 0} and S2 =
{x2 = 0}. An example of the trajectories of the system with
Twisting controller, with gains k1 and k2 selected such that
asymptotic stability is guaranteed, is shown in Figure 1. Note
that the trajectories only cross the switching lines x1 = 0 and
x2 = 0 and they never remain over them, i.e. the switching
surfaces are not sliding modes.

Fig. 2. Phase plane trajectories with the Terminal Algorithm

Now consider the generalized 2-sliding algorithm (1) with
r1 = r3 and r2 = r4. In this case we obtain the Terminal
Algorithm [3]

u = −α sign(σ), σ = x2 + β
√
|x1| sign(x1) (4)

where α = k1 + k2 and β = r2/r1. Here the closed loop
dynamics (3) is also (state) affine, since u is constant in
each of the two regions generated by the switching surface
S = {σ = 0}, i.e.

u =

{
u1 = −α, σ > 0
u2 = α, σ < 0

.

Trajectories of the system with Terminal controller, with
stabilizing gains α and β, are shown in Figure 2. Note that
for the gains used in the Fig. 2, when the trajectories hit
the switching line σ = 0 they stay on it, i.e. the switching
surface is a (first order) sliding mode.

Note also that the generalized 2-sliding algorithm (1)
is indeed piecewise state affine for every selection of the
parameters ri, i = 1, . . . , 4.

2) Third Order System: Another example of such a
HOSM controller is given by the 3-sliding homogeneous
algorithm introduced by [14] for the three dimensional
system

ẋ1 = x2, ẋ2 = x3, ẋ3 = uλ, (5)

and given by the event based switching strategy

Step 1. Set λ = T until x2 = x3 = 0
uT = −k2 sign(x2)− k3 sign(x3)

Step 2. Set λ = A until x1 = 0
uA = −k1 sign(x1)

Step 3. Go to Step 1

.

Figure 3 shows some trajectories for this algorithm. Note
that the trajectories only cross the planes x1 = 0, x2 = 0
and x3 = 0 and they never remain on them.

In [14] control uA is referred as Anosov Unstable (AU)
while control uT is termed Modified Twisting (MTW). Here
we call this algorithm AU-MTW. Note again that for the AU-
MTW algorithm u is piecewise constant, so that by parts, this
is as follows:
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Fig. 3. Integral curve example of the AU-MTW algorithm

When u = uT

u =


u1 = −k2 − k3, x2 > 0, x3 > 0
u2 = −k2 + k3, x2 > 0, x3 < 0
u3 = k2 + k3, x2 < 0, x3 < 0
u4 = k2 − k3, x2 < 0, x3 > 0

and when u = uA

u =

{
u5 = −k1, x1 > 0
u6 = k1, x1 < 0

.

B. A More General Class of Systems

The given HOSM controllers are examples of a more
general class of algorithms (see e.g. [3], [9]) that can be
applied to an n-th order system

ẋ1 = x2
ẋ2 = x3
...

...
...

ẋn−1 = xn
ẋn = f(t, x) + u

(6)

where the state x ∈ Rn, f(t, x) ∈ R is an uncertain function
such that |f(t, x)| ≤ F for any (t, x) ∈ R+ × Rn, for a
known constant F ∈ R, and u ∈ R is the control input, that
is, for example, piecewise constant, leading to a closed loop
system that is state affine, and possibly homogeneous. Note
that the solutions of system (6) when a HOSM controller is
applied are to be understood in the sense of Filippov [7],
and so they are absolutely continuous functions of time.

This dynamics (6) can be written as (we set by now here
f(t, x) = 0) a set of m state affine systems given by

ẋ = Ax+Bui, ∀x ∈ Si (7)

where

A =



0 1 0 · · · 0

0 0 1
...

...
. . . 0

0 0 1
0 · · · · · · · · · 0

 , B =


0
0
...
0
1

 ,

and ui, i ∈ {1, 2, . . . ,m}, is constant on each set Si. Their
boundaries correspond to the switching surfaces.

Let φi(τ ; t, x) denote the solution of (7) whose initial
condition is the point x ∈ Si in the time t, this means that
φi(t; t, x) = x.

Now, on the interior of each set Sj , j ∈ {1, 2, . . . ,m}, the
system (7) has a solution ϕj(t; 0, x), with initial condition x
at the instant of time t = 0. This trajectory is given by

ϕj(t; 0, x) = eAtx+

∫ t

0

eA(t−τ)dτBui .

Since

eAt =


1 t t2

2! · · · tn−1

(n−1)!

0 1 t
...

...
. . . t2

2!
0 1 t
0 · · · · · · · · · 1

 , e
AtB =



tn−1

(n−1)!
tn−2

(n−2)!

...
t
1

 ,

the expression for ϕj(t; 0, x) is polynomial in t. If there
are no sliding surfaces, then the whole trajectory of the
system φi(τ ; t, x) is a sequence of such partial trajectories.
When there are sliding surfaces, it is necessary to calculate
their particular behavior. Note that due to the homogeneity
of the system, the solution function φi(τ ; t, x) will be also
homogeneous (see for example Proposition 5.8 of [4]).

C. Construction of Lyapunov Functions

The construction of Lyapunov functions for this kind
of HOSM algorithms cannot proceed as for some classes
of hybrid or piecewise linear systems, where some of the
subsystems has a stable equilibrium point (at the origin), and
a continuous or discontinuous Lyapunov function is designed
by combining these functions. In the present case the origin
is not even an equilibrium point for any of the subsystems.
Moreover, many HOSM algorithms (as e.g. the Twisting
algorithm) present the Zenon’s phenomenon.

It is well known, for example from the constructive proofs
of the Converse of Lyapunov’s Theorem (see for example
Chapter 4 of [6]), that integrating e.g. the norm of the state
along the whole trajectory of the system leads to a Lyapunov
function for the system. More specifically, the function

V (x) =


∫ t+δ
t

W (φ1(τ ; t, x)) dτ, x ∈ S1
...

...∫ t+δ
t

W (φm(τ ; t, x)) dτ, x ∈ Sm

(8)

where W (x1, . . . , xn) is a positive definite function, is a
Lyapunov function for system (7) for some δ. Note that in
(8) the intersection of the sets Si must be empty and their
union equal to Rn. Some characteristics of this method are:

• Since a converging HOSM algorithm has negative ho-
mogeneity degree, its convergence occurs in finite time
[9], [10], so that if δ → ∞ then the integral does
converge for any W (x).

• If W (x) is continuous then, due to the continuity of so-
lutions of a differential inclusion [7] with respect to the

D.R. © AMCA Octubre de 2012 550



initial condition, the function V (x) is also continuous
when δ → ∞. It is also differentiable for every x not
on the switching surfaces Si.

• If W (x) is homogeneous then V (x) will be also homo-
geneous. This is due to the homogeneity of the system.

• The derivative of the function V (x) along the trajecto-
ries of system (7) is

V̇ = −W (x) .

it is therefore clear that V (x) is positive definite and
that V̇ is negative definite.

• If the integral does not converge for any positive definite
function W (x), then the algorithm is unstable. This
is, one obtains necessary and sufficient conditions for
stability.

• The homogeneity degree of W (x) is lower than the
homogeneity degree of V (x) by a fixed number. There-
fore, the higher the homogeneity degree of W (x) is
selected, the higher (and smoother) the resulting Lya-
punov function V (x) will be.

• The method can be extended to the case with perturba-
tions, i.e. f(t, x) 6= 0.

As described before, it is possible to have an explicit
expression for the trajectories of system (7), so that in this
case the construction of V (x) in (8) can be feasible. We
will show by means of the examples presented in the next
sections, that this is indeed the case.

III. LYAPUNOV FUNCTIONS FOR TWISTING ALGORITHM

Consider (6) with f(t, x) = 0 and u as in (2), that is

ẋ1 = x2
ẋ2 = −k1 sign(x1)− k2 sign(x2).

(9)

Note that this system is homogeneous of degree δ = −1
with weights [ρ1, ρ2] = [2, 1].

A. Homogeneous Lyapunov function of degree 1

Applying the method described in Section II by set-
ting the homogeneus function of degree 0 (for simplicity
0-homogeneous)

W (x) = 1,

it results that each integral in (8) equals δ. Selecting δ as
the convergence time to the origin we get the following
Lyapunov function for (9)

V (x) =

{
η1|x2|+ η2Γ1, x1x2 > 0
η3|x2|+ η4Γ2, x1x2 ≤ 0

(10)

where

Γ1 =
√
x22 + 2(k1 + k2)|x1|, Γ2 =

√
x22 + 2(k1 − k2)|x1|.

η1 =
1

k1 + k2
, η2 =

2k1η1
(√
k1 − k2

)−1

√
k1 + k2 −

√
k1 − k2

,

η3 = − 1

k1 − k2
, η4 =

−2k1η3
(√
k1 + k2

)−1

√
k1 + k2 −

√
k1 − k2

.

Fig. 4. 1-homogeneus LF for Twisting algorithm

Since the integral on the right hand of (8) converges only
for k1 > k2 > 0, then these conditions are necesary and
sufficient for the finite time stability of the point x = 0
(without perturbation). A graph of the 1-homogeneus Lya-
punov Function (LF) V (x) is shown in Figure 4 for k1 = 2
and k2 = 1.

Function V (x) in (10) is homogeneous of degree δV = 1
with weights [ρ1, ρ2] = [2, 1]. Moreover, it is continuous
everywhere but not differentiable on the switching lines
S1 = {x1 = 0} and S2 = {x2 = 0}. Since there are no
sliding trajectories on these switching lines (see also Fig. 1)
it follows that the function V (x) evaluated along a trajectory
of the system φ (t; 0;x), i.e. V (φ (t; 0;x)) is differentiable
almost everywhere (except at the points where one of the
switching surfaces is crossed), and, since (10) was obtained
selecting W (x) = 1, its time derivative is almost everywhere

V̇ = −1. (11)

Integrating both sides of (11) from the initial time t0 = 0 to
the time t = T > 0, it is obtained that

V (x(T ))− V (x(0)) = −T. (12)

It is clear from (10) that V (x(0)) < ∞. Since system (9)
is homogeneous of negative degree, it converges in finite
time. If we consider that the convergence time is T , i.e.
V (x(T )) = 0, then from (12) we have that

V (x(0)) = T <∞

which shows that the reaching time to x = 0 is exactly
V (x(0)).

B. Homogeneous Lyapunov function of degree 3

If we now choose the (continuous) 2-homogeneus function

W (x) = |x1|+ x22,

then, applying the method, the Lyapunov Function obtained
for (9) is

V (x) =

{
λ1|x2|3 + λ2x1x2 + λ3Γ3

1, x1x2 > 0
λ4|x2|3 + λ5x1x2 + λ6Γ3

2, x1x2 ≤ 0
(13)
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Fig. 5. 3-homogeneus LF for Twisting algorithm

with Γ1, Γ2 defined as before and

λ1 =
k1 + k2 + 1

3(k1 + k2)2
, λ2 =

1

k1 + k2
,

λ3 =
2λ2

2

[
k21(k1 + 1)− k22(k1 − 1)

]
3
√
k1 − k2

[
(k1 + k2)

3
2 − (k1 − k2)

3
2

] ,
λ4 = −k1 − k2 + 1

3(k1 − k2)2
, λ5 =

1

k1 − k2
,

λ6 = λ1 + λ3 − λ4.

A graph of the 3-homogeneus LF V (x) is shown in Figure 5
for k1 = 2 and k2 = 1.

Function (13) is continuous everywhere, and it is differ-
entiable almost everywhere, except on the switching surface
S1. However it is locally Lipschitz continuous everywhere.
Therefore V (φ (t; 0;x)), being the composition of two Lip-
schitz continuous functions, is also a Lipschitz continuous
function of time [5, p. 391], having a derivative almost
everywhere, which is given by

V̇ = −W (x) = −
(
|x1|+ x22

)
. (14)

From the differential equation (14) it is possible to derive a
Differential Inequality for V of the form

V̇ ≤ −γV 2
3 .

From this inequality, and using the comparison lemma, an
upper bound for the convergence time T to the origin can
be calculated as follows

T ≤ 6(k1 + k2)λ
2
3
3 V

1
3 (x(0)).

C. Twisting Algorithm with perturbations

In order to deal with the disturbed case, consider (6) with
f(t, x) 6= 0 and u as in (2), this is

ẋ1 = x2 , ẋ2 = f(t, x) + u . (15)

It is possible to derive sufficient conditions for (robust)
stability of the origin x = 0 using the same Lyapunov
function V (x) of the unperturbed case (10). Taking its time
derivative along the trajectories of the perturbed system (15)
we find that (10) is a Lyapunov Function for(15) provided

that k1 and k2 are chosen such that they satisfy the next
condition

(k1 − k2)
(√
k1 + k2 −

√
k1 − k2

)
3k1 + k2 −

√
k21 − k22

> F,

where F is a uniform bound of the perturbation, i.e. for all
(t, x) the condition |f(t, x)| ≤ F is satisfied. The (finite)
convergence time T (x(0)) can be estimated as

T ≤ 1
cV (x(0)),

where

c = 1−
3k1 + k2 −

√
k21 − k22

(k1 − k2)
(√
k1 + k2 −

√
k1 − k2

)F .
IV. LYAPUNOV FUNCTION FOR A THIRD ORDER

ALGORITHM

To illustrate the fact that the proposed construction method
is not restricted to systems on the plane (n = 2), let us
consider (6) with n = 3, f(t, x) = 0 and u given by the
AU-MTW algorithm described in Section II. Note that (5)
is a hybrid system with a continous state x = (x1, x2, x3)T

and a discrete state λ whose discrete values are T and A
such as is stated by the AU-MTW algorithm. Selecting

W (x) = 1,

and applying the method, we get the following LF conside-
ring the initial control as uT but also including the pieces of
the trajectories with the control uA

V (x) =


ρ1|x3|+ ρ2Θ1 + ρ3 |Σ1|1/3 , x ∈ R1

ρ1|x3|+ ρ2Θ1 + ρ3 |Σ2|1/3 , x ∈ R2

−ρ4|x3|+ ρ5Θ2 + ρ3 |Σ3|1/3 , x ∈ R3

−ρ4|x3|+ ρ5Θ2 + ρ3 |Σ4|1/3 , x ∈ R4.

(16)

where

Σ1 = x1 + ρ1x2x3 + (ρ21/3)x33 + (Rρ21/3)Θ3
1,

Σ2 = x1 − ρ1x2x3 + (ρ21/3)x33 − (Rρ21/3)Θ3
1,

Σ3 = x1 − ρ4x2x3 + (ρ24/3)x33 − (rRρ24/3)Θ3
2,

Σ4 = x1 + ρ4x2x3 + (ρ24/3)x33 + (rRρ24/3)Θ3
2,

R1 = {x2 ≥ 0, x3 ≥ 0}, R2 = {x2 ≤ 0, x3 ≤ 0},
R3 = {x2 < 0, x3 > 0}, R4 = {x2 > 0, x3 < 0},

Θ1 =
√
x23 + 2(k2 + k3)|x2|, Θ2 =

√
x23 + 2(k2 − k3)|x2|,

ρ1 =
1

k2 + k3
, ρ2 =

2k2ρ1(k2 − k3)−
1
2

√
k2 + k3 −

√
k2 − k3

ρ3 =
1 + ρ1k1 + ρ2

√
k21 + k1(k2 + k3)

(k1/6)1/3(1− C1/3)
,

ρ4 =
1

k2 − k3
, ρ5 =

2k2ρ4(k2 + k3)−
1
2

√
k2 + k3 −

√
k2 − k3

,

r =

√
k2 − k3
k2 + k3

, R =
1− r3 − r4 + r7

r − r7 ,

C =
2R
√
k1(k1 + k2 + k3)3 + k1(2k1 + 3(k2 + k3))

(k2 + k3)2
.
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Fig. 6. Surface C = 1 in the gain space for the AU-MTW Algorithm.
The Stability region is on the right of the surface.

Since the integral on the right hand of (8) converges only
when C < 1, then this condition is necesary and sufficient
for the finite time stability of the point x = 0 (without
perturbation). In Figure 6 the surface C = 1 is presented
in the gain space (k1, k2, k3). Only for the values on the
right of this surface finite time stability is assured.

Function (16) is continuous everywhere but not differen-
tiable on the planes x1 = 0, x2 = 0 and x3 = 0. Note
that the trajectories of the system only cross these planes
and they never remain there (see also Fig. 3). Therefore
V (φ (t; 0;x)) is differentiable (as a function of time) almost
everywhere (except on the time instants where the trajectory
crosses one of the planes xi = 0, i = 1, 2, 3). Its derivative
along the trajectories of the system with the control uT is
almost everywhere V̇ = −1.

Now consider the surface

RA = {(x1 ≤ 0, x2, x3 ≥ 0, x23 = 2k1x2)

or (x1 ≥ 0, x2, x3 ≤ 0, x23 = −2k1x2)}.

and note that in order to take the derivative along the
trajectories of the system when control uA is being applied
it is needed another expresion of V (x). Considering the fact
that trayectories with uA only take values in the surface RA
and applying the construction method we get

VA(x) = ρ3

(
|x1|+

|x3|3

6k21

) 1
3

− 1

k1
|x3|, x ∈ RA (17)

whose time derivative is given again by V̇ = −1. Thus the
reaching time to the origin T can be calculated exactly as
follows

T = V (x(0)) .

We can also deal with the perturbed case in the same manner
as it was done with the 1-homogeneus LF for Twisting
algorithm.

V. CONCLUSIONS

A method to construct (strict) Lyapunov Functions for a
class of Higher Order Sliding Modes (HOSM) algorithms,

that are homogeneous and piecewise state affine has been
presented. Its construction is based in the knowledge of an
expression for the solutions of the system, that leads to a
Lyapunov function, in the same spirit as in the converse
Lyapunov’s theorems. Although this method can be applied
to any system in principle, it is only feasible in some
cases, as for Linear Time Invariant systems. We show by
means of two examples that this is also true for some
classes of HOSM algorithms, and we have also been able to
construct Lyapunov functions using this idea for some other
algorithms. This will be reported somewhere else. We also
hope that this method will be able to provide with Lyapunov
functions for some important HOSM algorithms, what is an
important complement to this research area.
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